

Ver.00

Page: 1/25

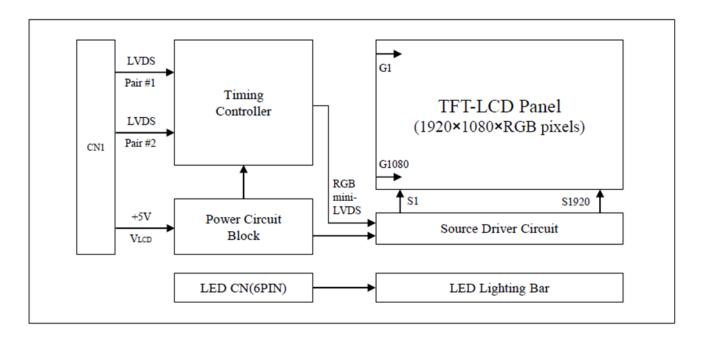
Product Specification For TFT Module

Model Name	XF238FHD03A-	-ILI	LL
Customer			
Note			
■Preliminary Speci	fication		
□Final Specification	n		
□CUSTOMER'S APP	PROVAL		
BY:	NO VIII		
DATE:			
Con	mment		PRESENTED BY

Page: 2/25

Contents

No.	Item	Page
1.0	General Description	3-4
2.0	Absolute Maximum Ratings	5
3.0	Electrical Specifications	6-7
4.0	Optical Specifications	8-9
5.0	Interface Connection	10-12
6.0	Signal Timing Specifications	13-14
7.0	Signal Timing Waveforms of Interface Signal	15-16
8.0	Input Signals, Display Colors & Gray Scale of Colors	17
9.0	Power Sequence	18
10.0	Mechanical Characteristics	19
11.0	Reliability Test	20
12.0	Handling& Cautions	21
13.0	APPENDIX	22-25


Ver.00

Page: 3/25

1.0 GENERAL DESCRIPTION

1.1 Introduction

XF238FHD03A-ILLL is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 23.8 inch diagonally measured active area with FHD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.

1.2 Features

- LVDS Interface with 2 pixel / clock
- High-speed response
- 6-bit (Hi-FRC) color depth, display 16. 7M colors
- High luminance and contrast ratio, low reflection and wide viewing angle
- DE (Data Enable) only
- RoHS/Halogen Free
- TCO 7.0, ES 7.0 compliant
- Gamma Correction
- Reverse Type

Ver.00

Page: 4/25

1.3 Application

- Desktop Type of PC & Workstation Use
- Slim-Size Display for Stand-alone Monitor
- Display Terminals for Control System
- Monitors for Process Controller

1.4 General Specification

The followings are general specifications at the model XF238FHD03A-ILLL.

<Table 1. General Specifications>

Parameter	Specification	Unit	Remarks
Active area	527.04(H) × 296.46(V)	mm	
Number of pixels	1920(H) ×1080(V)	pixels	
Pixel pitch	0.2745 (H) ×0.2745(V)	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	16.7M	colors	
Display mode	Normally Black		
Dimensional outline	540.2(H) x 315.6(V) x12.9(D) typ.	mm	Detail refer to drawing
Weight	2240(Typ.), 2390(Max.)	g	
Bezel width (L/R/U/D)	5/5/5/11	mm	
Surface Treatment	Haze 25%, 3H		
Back-light	Horizontal arranged, 1-LED Lighting Bar type		

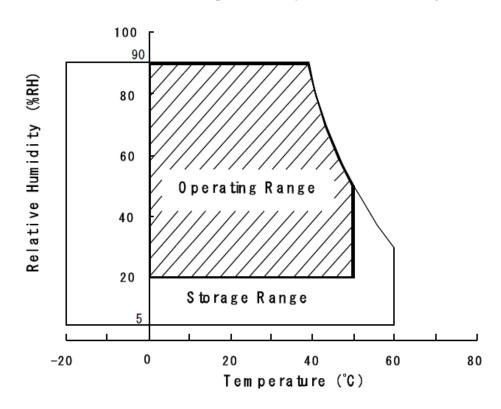
Ver.00

Page: 5/25

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings> [VSS=GND=0V]


Parameter	Symbol	Min.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-0.3	6.0	V	
Logic Supply Voltage	V_{IN}	VSS-0.3	V _{DD} +0.3	V	Ta = 25 °C
Operating Temperature	T_{OP}	0	+50	°C	1)
Storage Temperature	T_{ST}	-20	+60	°C	1)
Storage Humidity	H_{SH}	5	90	%	1)
LCM Surface	Tsurface	0	+65	°C	2)
Temperature (Operation)	15511400	U	T03	C	2)

Note: 1) Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39 OC max. and no condensation of water.

2) Panel Surface Temperature should be Min. 0OC and Max. +65OC under the

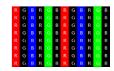
VDD = 5.0V, Frame rate = 60Hz,25OC ambient Temp. no humidity control and LED string current is typical value.

Page: 6/25

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical specifications >


 $[Ta = 25 \pm 2 \, ^{\circ}C]$

Parameter.		Min.	Typ.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	4.5	5.0	5.5	V	Note1
Power Supply Current	I_{DD}	-	600	900	mA	Note1
In-Rush Current	I_{RUSH}	-	2.0	3.0	A	Note 2
Permissible Input Ripple Voltage	V_{RF}	-	-	300	mV	Note1,3
High Level Differential Input Threshold Voltage	V_{IH}	-	-	+100	mV	
Low Level Differential Input Threshold Voltage	V_{IL}	-100	-	1	mV	
Differential input voltage	V _{ID}	200	-	600	mV	
Differential input common mode voltage	Vcm	1.0	1.2	1.5		V _{IH} =100mV, V _{IL} =-100mV
	P_{D}	-	3.0	4.5	W	
Power Consumption	P_{BL}	10.58	11.34	12.1	W	Note 4
	P_{total}	-	14.34	16.6	W	

Notes: 1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for VDD=5.0V, Frame rate=75Hz Clock frequency = 92.9 MHz. Test Pattern of power supply current

a) Typ: Color Test

b) Max: Vertical SubLine 255

- 2. Duration of rush current is about 2 ms and rising time of VDD is 520 μ s \pm 20 %
- 3. Ripple Voltage should be covered by Input voltage Spec.
- 4. Calculated value for reference (Input pins*VPIN ×IPIN) excluding inverter loss.

Page: 7/25

3.2 Backlight Unit

< Table 4. LED Backlight Unit >

Parameter		Min.	Тур.	Max.	Unit	Remarks
LED Light Bar Input Voltage Per Input Pin	VPIN	50.4	54	57.6	V	Duty 100%
LED Light Bar Input Current Per Input Pin	IPIN	-	70	-	mA	Note1,2,
LED Power Consumption	PBL	10.58	11.34	12.1	W	Note 3
LED Life-Time	-	30,000	-		Hrs	Note 4

LED bar consists of 54LED packages, 3 strings(parallel)*18packages(serial)

Note1: There are one light bar ,and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is 48mA

Note3: PBL=3 Input pins*VPIN×IPIN

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at IPIN=70mA on condition of continuous operating at

25 ±2 °C

Ver.00

Page: 8/25

4.0 OPTICAL SPECIFICATION

4.10verview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCONE PR730) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta\emptyset=0$ (= $\theta3$) as the 3 o'clock direction (the "right"), $\theta\emptyset=90$ (= $\theta12$) as the 12 o'clock direction ("upward"), $\theta\emptyset=180$ (= $\theta9$) as the 9 o'clock direction ("left") and $\theta\emptyset=270$ (= $\theta6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 5.0V +/-10% at 25°C. Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

 $[VDD = 5.0V, Frame rate = 60Hz, Clock = 74.25MHz, IBL = 210mA, Ta = 25\pm2 °C]$

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
н	Horizon	tal	Θ3		85	89	-	Deg.	
Viewing Angle	110112011		Θ9	CR > 10	85	89	-	Deg.	Note 1
range	Vertic	al	Θ ₁₂	GILT IS	85	89	1	Deg.	1,000
			Θ ₆		85	89	1	Deg.	
Luminance Co	ntrast rat	io	CR		700	1000			Note 2
Luminance of	of White		Y_{W}		200	250		cd/m ²	Note 3
White luminanc	e uniforn	nity	ΔΥ		75	1		%	Note 4
	Wł	nite	W_X		0.283	0.313	0.343	1	
			Wy	$\Theta = 0 \square$ (Center)	0.299	0.329	0.359	1	
	Re	d	R_X	Normal	0.608	0.638	0.668	-	
Reproduction			Ry	Viewing Angle	0.327	0.357	0.387	1	Note 5
of color	Gre	en	G_X		0.280	0.310	0.340	-	11000
			Gy		0.611	0.641	0.671	-	
	Blu	ıe	B_X		0.122	0.152	0.182	-	
			By		0.041	0.071	0.101	-	
Response Tim	ie G7	īG	Tg			14	20	ms	Note 6

Ver.00

DISPLAY

XINSUN DISPLAY INTEGRATION LTD.

Page: 9/25

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing is determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of Θ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FIGURE 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster

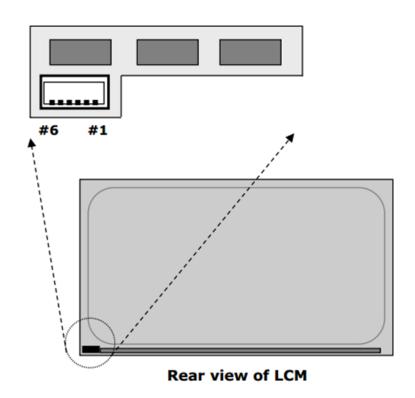
Luminance when displaying a black raster

- 3. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : $\Delta Y = ($ Minimum Luminance of 9points / Maximum Luminance of 9points) * 100 (See FIGURE 2 shown in Appendix).
- 5. The color chromaticity coordinates specified in Table 5. shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize.

 Each time in below table is defined as appendix Figure 3and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)".
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See FIGURE 4 shown in Appendix).

Page: 10/25

5.0 INTERFACE CONNECTION.


5.1 Electrical Interface Connection

5.1.1 LED Light Bar

-LED connector: BM06B-SHJS-TB(JST) or 10035WS-H06B (YEONHO) or EQUIVALENT

< Table 1. LED Light Bar>

Pin No	Symbol	Description
1	IRLED1	LED current sense for string1
2	IRLED2	LED current sense for string2
3	VLED	LED power supply
4	VLED	LED power supply
5	IRLED3	LED current sense for string3
6	NC	NC

Ver.00

Page: 11/25

 CN101 Module Side Connector: UJU IS100-L30O-C23or Equivalent User Side Connector: JAE FI-X30H or Equivalent

Pin No.	Symbol	Function	Remark
1	RXO0-	Negative Transmission data of Pixel 0 (ODD)	
2	RXO0+	Positive Transmission data of Pixel 0 (ODD)	
3	RXO1-	Negative Transmission data of Pixel 1 (ODD)	
4	RXO1+	Positive Transmission data of Pixel 1 (ODD)	
5	RXO2-	Negative Transmission data of Pixel 2 (ODD)	
6	RXO2+	Positive Transmission data of Pixel 2 (ODD)	
7	BIST	Bist function	Note 1
8	RXOC-	Negative Transmission Clock (ODD)	
9	RXOC+	Positive Transmission Clock (ODD)	
10	RXO3-	Negative Transmission data of Pixel 3 (ODD)	
11	RXO3+	Positive Transmission data of Pixel 3 (ODD)	
12	RXE0-	Negative Transmission data of Pixel 0 (EVEN)	
13	RXE0+	Positive Transmission data of Pixel 0 (EVEN)	
14	GND	Power Ground	
15	RXE1-	Negative Transmission data of Pixel 1 (EVEN)	
16	RXE1+	Positive Transmission data of Pixel 1 (EVEN)	
17	GNG	Power Ground	
18	RXE2-	Negative Transmission data of Pixel 2 (EVEN)	
19	RXE2+	Positive Transmission data of Pixel 2 (EVEN)	
20	RXEC-	Negative Transmission Clock (EVEN)	
21	RXEC+	Positive Transmission Clock (EVEN)	
22	RXE3-	Negative Transmission data of Pixel 3 (EVEN)	
23	RXE3+	Positive Transmission data of Pixel 3 (EVEN)	
24	GND	Power Ground	Note 2
25	NC	*Reserved for LCD manufacturer's use (CTL_DVR)	
26	NC	*Reserved for LCD manufacturer's use (CE_DVR)	
27	NC	No Connection	
28	VDD		
29	VDD	Power Supply: +5V	
30	VDD		

Note 1: H: White-Black-Red-Green-Blue Pattern Aging, L: Black Pattern, when no LVDS signal.

Note 2: This pin should be connected with GND.

Ver.00

Page: 12/25

5.2 LVDS Interface (Tx; THC63LVDF83A or Equivalent)

5.2.1 LVDS Interface

	Input		mitter	Interface		HT236F01-100 (CN11)	Remark
	Signal		Pin No.	System (Tx)	TFT-LCD (Rx)	Pin No.	
	OR0	51					
	OR1	52					
	OR2	54	40	OI ITTO	DMOO	4	
	OR3	55	48 47	OUT0	RXO0- RXO0+	1 2	
	OR4	56	47	OUT0	KAO0+	2	
	OR5	3		+			
	OG0	4		·			
	OG1	6					
	OG2	7					
	OG3	11	16	O L VITT 1	RXO1- RXO1+		
		12	46 45	OUT1 - OUT1 +		3 4	
		14	43			4	
L	OB0	15					
V	OB1	19		·			
D S	OB2	20					
5	OB3	22					
	OB4	23				5 6	
	OB5	24	42 41	OUT2	RXO2-		
	Hsync	27	41	OUT2	RXO2+		
	Vsync	28		+			
	DE	30		•			
	MCL	31	40	CLK OUT-	RXO CLK-	8	
	K		39	CLK OUT+	RXO CLK+	9	
	OR6	50					
	OR7	2					
	OG6	8	20	OLE	RXO3-	10	
	OG7	10	38 37	OUT- OUT+	RXO3+	10 11	
	OB6	16		001+		11	
	OB7	18					
	RSVD	25					

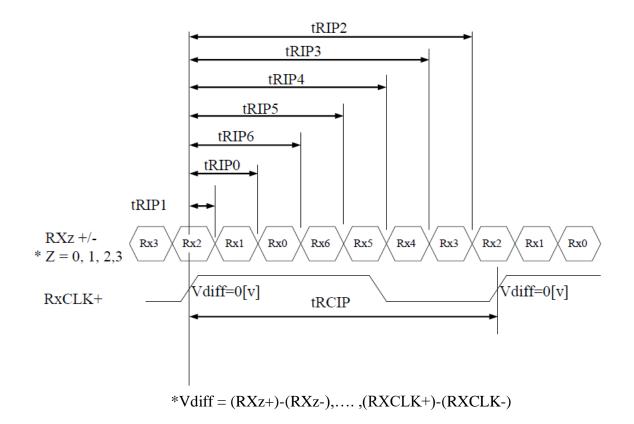
Page: 13/25

6.0 SIGNAL TIMING SPECIFICATION

6.1 XF238FHD03A-ILLL is operated by the DE only.

Item	Symbols	Min.	Тур.	Max.	Unit	Note	
	Period	tCLK	10.47	13.47	17.7	ns	
DCLK	Frequency	-	56.75	74.25	95.5	MHz	
	Period	tHP	1050	1100	1120	tCLK	
	Horizontal Valid	tHV	960	960	960	tCLK	
Hsync	Horizontal Blank	tHB	90	140	160		
	Frequency	fH	56	67.5	84.5	KHz	
	Period	tVP	1110	1125	1251	tHP	
	Vertical Valid	tVV	1080	1080	1080	tHP	
Vsync	Vertical Blank	tVB	30	45	171	tHP	
	Frequency	fV	50	60	75	Hz	
LVDS Receiver clock	Input spread spectrum ratio	SSr	-3	-	+3	%	

Note: The DCLK range at last line of V-blanking should be set in 0~987.

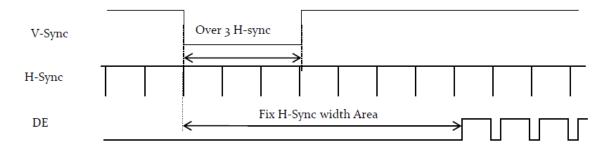

Page: 14/25

6.2 LVDS Rx Interface Timing Parameter

The specification of the LVDS Rx interface timing parameter is shown in Table 4.

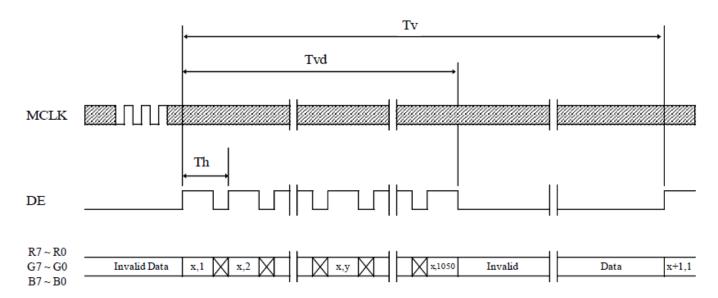
<Table 4. LVDS Rx Interface Timing Specification>

Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	tRCIP	10.47	13.47	17.7	nsec	
Input Data 0	tRIP1	-0.4	0.0	+0.4	nsec	
Input Data 1	tRIP0	tRCIP/7-0.4	tRCIP/7	tRCIP/7+0.4	nsec	
Input Data 2	tRIP6	2 ×tRCIP/7-0.4	2 ×tRCIP/7	$2 \times tRCIP/7 + 0.4$	nsec	
Input Data 3	tRIP5	3 ×tRCIP/7-0.4	3 ×tRCIP/7	3 ×tRCIP/7+0.4	nsec	
Input Data 4	tRIP4	4 ×tRCIP/7-0.4	4 ×tRCIP/7	4 ×tRCIP/7+0.4	nsec	
Input Data 5	tRIP3	5 ×tRCIP/7-0.4	5 ×tRCIP/7	5 ×tRCIP/7+0.4	nsec	
Input Data 6	tRIP2	6 ×tRCIP/7-0.4	6 ×tRCIP/7	6 ×tRCIP/7+0.4	nsec	



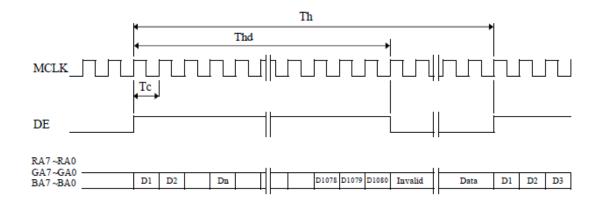
Ver.00

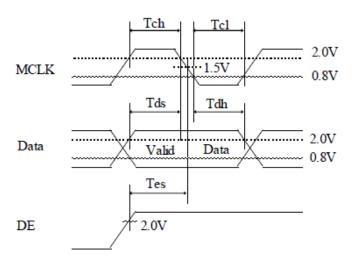
Page: 15/25


7.0 SIGNAL TIMING WAVEFORMS OF INTERFACE SIGNAL

7.1 Sync Timing Waveforms

- 1) Need over 3 H-sync during V-Sync Low
- 2) Fix H-Sync width from V-Sync falling edge to first rising edge


7.2 Vertical Timing Waveforms



Ver.00

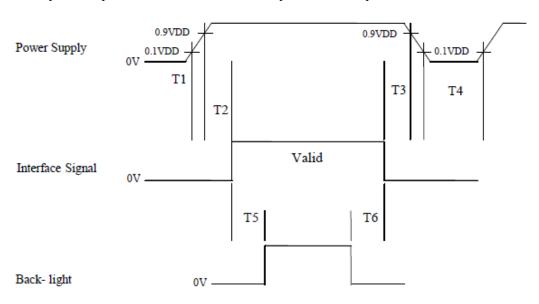
Page: 16/25

7.3 Horizontal Timing Waveforms

Ver.00

Page: 17/25

8.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS


Calan & Carre Carl		RED DATA							GREEN DATA								BLUE DATA								
Color & G	Color & Gray Scale		R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B 4	B 3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Δ												1									<u> </u>			
of RED	∇				,	ļ							,	ļ								\downarrow			
	Brighter	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	∇	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
of GREEN	Δ				,	1							1	1								↑			
	∇				,	ļ							,	ļ								\downarrow			
	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	∇	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
of BLUE	Δ	<u></u>						1						<u></u>											
	∇				,	ļ							,	ļ								\downarrow			
	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	∇	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
	Δ	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Gray Scale	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
of WHITE	Δ	<u></u>						<u></u>					<u> </u>												
	∇					ļ								ļ								↓			
	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1
	∇	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ver.00

Page: 18/25

9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below:

- $0.5 \text{ ms} \le T1 \le 7 \text{ ms}$
- $0 \le T2 \le 50 \text{ ms}$
- $0 \le T3 \le 50 \text{ ms}$
- $1 \sec \le T4$
- $200 \text{ ms} \leq T5$
- $200 \text{ ms} \leq T6$

Notes:

- 1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on.
- 3. Back Light must be turn on after power for logic and interface signal are valid.
- 4. T7 decreases smoothly, there is none re-bouncing voltage.
- 5. If T3=0ms, there is a risk of flicker when power On/Off.
- 6. If T6=0ms, there is a risk of abnormal display when power off.

Page: 19/25

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

FIGURE 6 (located in Appendix) shows mechanical outlines for the model XF238FHD03A-ILLL. Other parameters are shown in Table 5.

<Table 5. Dimensional Parameters>

Parameter	Specification	Unit		
Dimensional outline	540.2(H) x 315.6(V) x12.9(D) typ.	mm		
Weight	2240(Typ.), 2390(Max.)	gram		
Active area	$527.04(H) \times 296.46(V)$	mm		
Pixel pitch	0.2745(H)mm x 0.2745(V)mm	mm		
Number of pixels	$1920 (H) \times 1080 (V) (1 \text{ pixel} = R + G + B \text{ dots})$	pixels		
Back-light	Horizontal arranged, 1-LED Lighting Bar type			

10.2 Mounting

See FIGURE 5. (shown in Appendix)

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen asseen from a distance 50cm from the screen with an overhead light level of 350lux.

Page: 20/25

11.0 RELIABLITY TEST

The Reliability test items and its conditions are shown in below.

<Table 6 Reliability Test Parameters >

< rable 6 Reliability Test Parameters >									
No	Test Items	Conditions							
1	High temperature storage test	$Ta = 60 ^{\circ}\text{C}, 240 \text{hrs}$							
2	Low temperature storage test	$Ta = -20 ^{\circ}\text{C}, 240 \text{hrs}$							
3	High temperature & high humidity operation test	Ta = 50 °C, 80% RH, 240hrs							
4	High temperature operation test	Ta = 50 °C, 240hrs							
5	Low temperature operation test	$Ta = 0^{\circ}C, 240hrs$							
6	Thermal shock	$Ta = -20 \text{ °C} \leftrightarrow 60 \text{ °C} (0.5 \text{ hr}), 100 \text{ cycle}$							
		Frequency	Random,10 ~ 300 Hz, 30 min/Axis						
7	Vibration test (non-operating)	Gravity/AMP	1.5 Grms						
	(non-operating)	Period	X, Y, Z 30 min						
		Gravity	50G						
8	Shock test(non-operating)	Pulse width	11msec, sine wave						
		Direction	±X, ±Y, ±Z						
		Direction	Once for each						
9	Electro-static discharge test	Air : 150 pF, 330Ω, 15 KV Contact: 150 pF, 330Ω, 8 KV							

Ver.00

Page: 21/25

12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
 - Dew drop atmosphere should be avoided.
 - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere.
 Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - Do not disassemble and/or re-assemble LCD module.
 - Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be

broken. We recommend to use the original shipping packages.

Page: 22/25

13.0 APPENDIX

Figure 1. Measurement Set Up

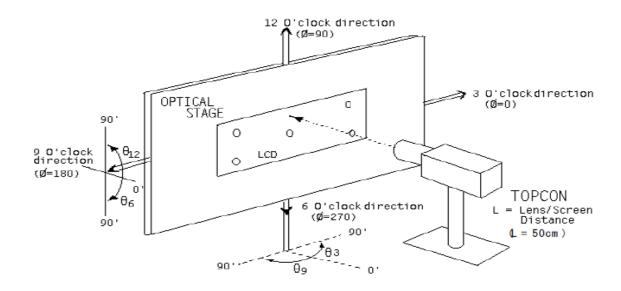
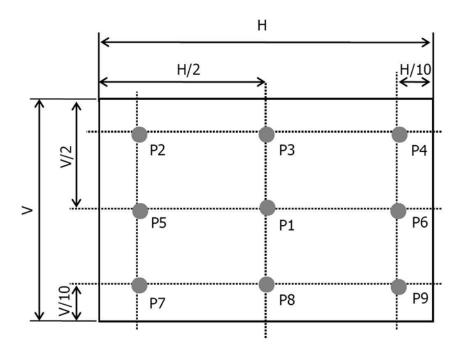
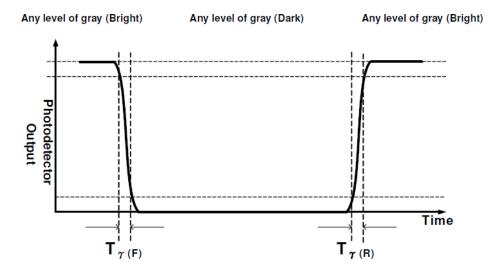
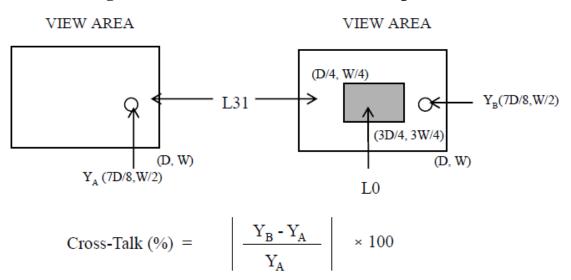
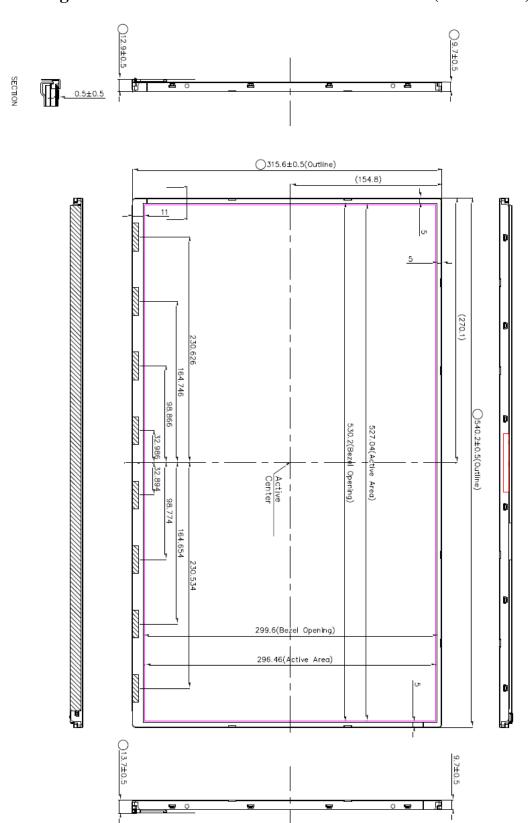



Figure 2. White Luminance and Uniformity Measurement Locations (9 points)

Page: 23/25

Figure 3. Response Time Testing

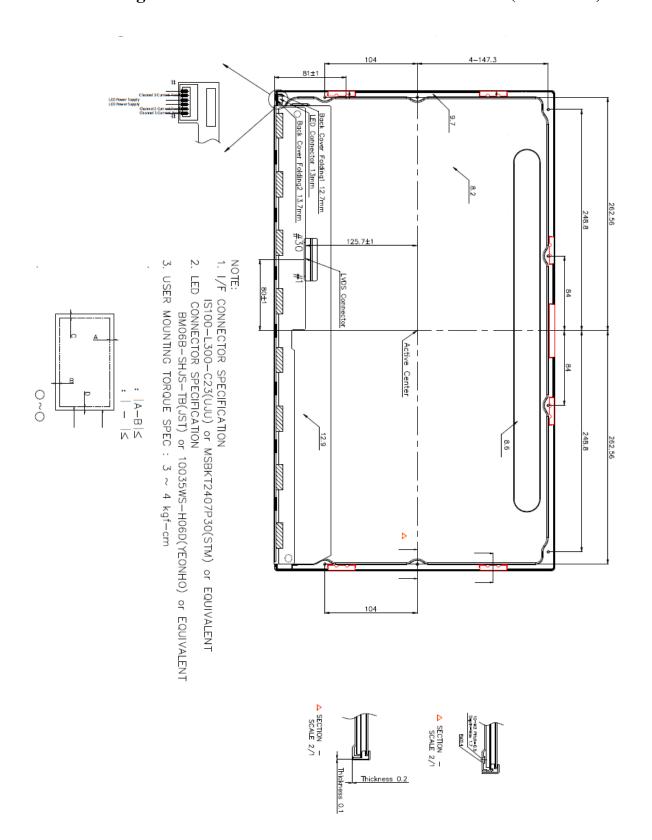




Figure 4. Cross Modulation Test Description

Where: Y_A = Initial luminance of measured area (cd/m²) Y_B = Subsequent luminance of measured area (cd/m²) The location measured will be exactly the same in both patterns

Page: 24/25

Figure 5. TFT-LCD Module Outline Dimensions (Front view)



Ver.00

XINSUN DISPLAY INTEGRATION LTD.

Page: 25/25

Figure 6. TFT-LCD Module Outline Dimensions (Rear view)

